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Abstract: - Attitude dynamics of a spacecraft (SC) with variable structure (inertia-mass parameters variation) is 
examined. Equations of the motion of the SC are obtained on the base of Hamiltonian formalism in Serret-
Andoyer variables. These equations can be used for analysis and synthesis of conditions of the SC attitude 
motion on active legs of orbital trajectories. Analytical and numerical modeling of the SC motion is realized. 
Existence of the SC chaotic modes of motion is demonstrated with the help of Melnikov method and Poincaré 
sections. Also attitude motion of a dual-spin spacecraft (DSSC) is considered at presence of small internal 
harmonic torque between DSSC coaxial bodies.  
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1 Introduction 
Analysis and synthesis of rigid bodies 

systems' and spacecraft's attitude motion remains 
one of the central problems of the theoretical and 
applied mechanics, including the space flight 
dynamics [1-24].  

Many authors [2-24] in various 
formulations examine attitude motion of the rigid 
bodies systems, spacecraft (SC), gyrostat-satellites, 
and also dual-spin spacecraft (DSSC) with constant 
and variable structure.  

In the papers [3-5] the DSSC attitude 
motion modes with the spacecraft longitudinal axis 
tilting are analyzed. Investigation of the tilting 
modes [3-5] was conducted on the base of direct 
integration of motion equations and numerical 
experiments.  

Works [6-11, 16, 19] are devoted to the 
study of perturbed motion of the rigid bodies and 
SC, including the action of small harmonic 
disturbances, variability of the inertia-mass 
parameters, and also damping effect, e.g. viscous 
(aerodynamic) drag [8]. In [12, 20] the task of the 
gyrostat's motion considered in cases of unperturbed 
motion. Papers [13, 14] reveal some aspects of 
angular motion of gyrostats with changing structure. 

In [15, 17, 18] the DSSC with variable 
structure was considered; also the attitude motion's 
evolutions were investigated with the help of full 

mathematical models for systems with variable 
structure. Also in [15, 17] was the qualitative 
method developed — this method based on phase 
trajectories curvature evaluating and can be applied 
to analysis and synthesis of the attitude motion 
modes of the SC (DSSC) with variable inertia-mass 
parameters. 

In this paper the angular (attitude) motion of 
the SC with variable structure is considered on the 
base of mathematical model in Hamiltonian form. 
The variability of structure simulates real processes 
of mass-inertia parameters variation in the SC (these 
processes may be connected, for example, with the 
action of rocket engines and with small elastic 
vibrations). Also in this paper realization possibility 
of the SC tilting motion like implementation of 
chaotic modes is investigated. Chaotization of 
motion arises by reason of heteroclinic separatrix-
orbits splitting in the phase space at presence of 
small harmonic perturbations.  

So, in the paper the attitude dynamics of the 
two particular SC types is studied in the cases of 
free motion realization without acting of the 
external forces.  
 

2 The Mathematical Model 
One of the most effective modeling techniques in 
dynamics is the Hamiltonian formalism [1, 21-24]. 
The mathematical model of the SC attitude motion 
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with variable structure also can be derived with the 
help of the Hamiltonian formalism.  

To construct the mathematical model of the 
attitude motion of SC with variable structure we can 
use canonical equations based on the well-known 
tractate [1]: 
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where q , p  — are canonical coordinates and 

conjugate moments; P  — the generalized reactive 

force referred to the coordinate q  (this force act 

due to the variation of mass); Q  — the generalized 

external force; Н  — the system Hamiltonian 
function. 

Let us write a general form of the Hamiltonian 
corresponding to the attitude motion of a free SC 
without any potential energy function:  
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where  , ,
T

p q r 


 — the angular velocity vector; 

̂  — the tensor of inertia. 
The generalized reactive force has the form [1]: 
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where m  — the mass of  -th rejected particle; 

u


 — the absolute velocity of the rejected particle; 

v


 — the vector of the relative motion velocity of 

the body point, which reject particle. 
Assumption 1. The rejected particle is a material 
point which is separated from the main body. The 
particle receives the relative velocity at the time-
moment of its separation from the body. Further 
interaction of the rejected particle and the main 
body is not available [1].  

For the rigid body point we have the following 
absolute velocity of the angular motion about fixed 
point  
 v   

 
, (4) 

where 


 — the position vector of the point with 

number  . 
The reference frame used by the authors is 

located at the body point which coincides with the 
initial position of the SC mass center. 

The absolute velocity of the rejected particle is 

 ru v V   
 

, (5) 

where rV 


 — the velocity of the rejected particle 

relative to the rigid body. 
Expression (3) takes the form: 

 1 2P P P    , (6) 

where 
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We can calculate derivative 
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Positions of points in rigid body (SC) does not 
depend on the generalized velocity, then 
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We can rewrite the generalized reactive force: 
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where 
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Then 1P  has the shape: 
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It is possible to reduce the term in (14): 
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where  , ,x y z    


. 

After substitution of the term (15) into 
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expression (14) we can rewrite (12): 

 

 

 

 

2
1

1

2 2

1

2 2

1

2 2

1

1

n

n

v

n

n

v

n

dm
P

dt q q

dmp
p y z

q dt

dmq
q x z

q dt

dmr
r z y

q dt

dmp q
q p x y

q q dt

dmp r
r p

q q d


   

  







 









 

 



 

 
   











   
           


  




  




  



  
   

  

  
  

  











 
   

 







 

  1

1

.

n

n

x z
t

dmq r
r q y z

q q dt

 



 

 







  
  

  




 

 (16) 

Assumption 2. Let us consider the SC as a rigid 
body with constant distances between all its internal 

points  0 
 . Then the following expression 

takes place:  
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where  M M t  is the SC mass;  
C C t 
 

 — 

the position vector of the SC mass center. 
Some terms in expression (16) reducing gives us: 
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and 
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Taking into account (18), expression (16) can be 
rewritten as follows: 
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or in the matrix form: 
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As it is well known, the tensor of inertia of any 
rigid body can have diagonal form in the body 
reference frame whose axes coincide with the 
principal axes of the body. Let us use the principal 
axes as the main reference frame connected to the 
body. Then we have general diagonal tensor of 

inertia  0xy yz xzI I I   , hence 
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Assumption 3. Assume that all particles are 

rejected in the same direction (the rocket engine of 
the SC has the single direction of trust). Then the 
relative velocity (jet-vector) for all rejected points in 
the body frame is: 
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After transformation we have: 
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With the help of (17) we get: 
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Then we obtain new form of (6): 
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Finally, after substitution (25) into (1) we can 
write motion equations of the SC with variable 
structure: 
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Assumption 4. Assume that the center of mass 

remains at the same place in the body volume 
during process of the SC's structure changing: 
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The motion equations take the form: 
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3 Canonical equations of the SC 
motion in the Serret-Andoyer 
variables 
 
For examination of the SC motion we can use the 
Serret-Andoyer variables [21-24], which connected 
with the angular moment K  of the SC (fig. 1): 

 
Figure 1 — The Serret-Andoyer variables 

 

 

2

3

3

2 2

2 2

T T
, ,

T
, ,

sin ,

cos ,

.

x

y

z

L G K
l

I L G

K Ap G L l

K Bq G L l

K Cr L





 
       




   



  

  

 

K k K s K

K k

 



  (29) 

Assume that the body inertia tensor remains 
diagonal form during the mass modification process. 
Let us consider an asymmetric triaxial SC:  

      ˆ , , ,I diag A t B t C t A B C t    . 

Then the SC angular velocity components in the 
Serret-Andoyer variables have the from [24]: 
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 (30) 

In considered case the system Hamiltonian can 
be written [21-24]: 
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From (31) components of the vector 


 also can 
be expressed through the Serret-Andoyer variables: 
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where  
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With the help of (32), (33) we can write the 
following partial derivatives 
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In this work we consider the case 

when  0, 0, 0
T

C   during the inertia-mass 

changing (e.g. during propellant burning). It 
corresponds to symmetrical modes of solid 
propellant burning. Then from (25) follow: 
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Take into account expressions (1), (37), (38) 

and (39) we can obtain the free  0sQ  attitude 

motion equations of the SC with variable structure 
(mass-inertia parameters): 

 

 

2 2

2 2

2 2

2 2 2

2 2

2

2 2

2 2

3 3

1 sin cos
,

1 1 1
sin 2

2

1 sin cos
,

sin cos
,

sin cos
,

0, 0.

L

G

l l
l L

C A B

L G L l
A B

L l l
C A В

C A В

l l
G

A B

G l l
G A B

A B

I









  
    

 
  
      

 


    
 

  
   
  


 
  

 
  





  



  



 (40) 

It is needed to note, that the classical equations 
for free angular motion of the rigid body about fixed 
point (the SC's attitude motion) follow from (40) at 
constant inertia-mass parameters [19-24]: 
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4 Chaotic motion cases at presence of 
harmonic perturbations 
Initiation of complicated irregular (chaotic) modes 
is very important aspect of SC attitude dynamics' 
investigation. One of the main reasons of the motion 
chaotization is the splitting of the 
homo(hetero)clinic separatrices-orbits [6-11, 19, 
25]. The separatrices-orbits splitting implies 
separation and multiple intersections of stable and 
unstable manifolds of saddle homo(hetero)clinic 
points. Therefore close to the homo(hetero)clinic 
orbit phase trajectories form the chaotic layer. Inside 
the chaotic layer phase trajectory can passes through 
different phase space regions and, therefore, the SC 
performs complicated chaotic evolutions with 
repeating modes (rotation-oscillation-rotation-…) 
and the complex tilting motion. Analytical detection 
of the chaotic layer existence we can provide on the 
base of the Melnikov method [25]. 

So, let us consider some cases of the SC motion 
at presence of harmonic perturbation. 
 
4.1 Motion of the SC with synchronous 
modifications of the moments of inertia 
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4.1.1 Motion equations 
Assume that the inertia moments have the following 
time-dependences: 

 0 1 sinA A t   ,  0 1 sinB B t   , 

 0 1 sinC C t   , 

where   is the small parameter  1  . 

These time-dependences can be applied to 
modeling of the elastic properties of the SC's 
construction when the elastic vibrations lead to the 
compression of the body in one direction at the 
stretching along the other axes. 

Then derivates of inertia moments take the form: 

0 cosA A t   , 0 cosB B t   , 

0 cosC C t    . 

It is needed to note that the many-sided analysis 
of the motion chaotization of the SC with harmonic 
inertia moments was conducted in the papers [7-10]. 

In this case we can rewrite equations of the SC 
motion (41): 
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  (42) 

where 
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Also it is possible to note that the considered SC 
represents a system with one and a half degrees of 
freedom, because the system (42) contains one 
independent equation (for 2 ) which can be 

eliminated. 

The Taylor series expansion (by ε) gives the 
following first approximation for the fourth 
equation (42): 

 cosG G t     (43) 
Integration of (43) gives us the following 
dependence: 

  
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After ssubstitutions of the solution (44) and the 
Taylor series expansion with elimination of the 
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can obtain: 
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where 
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So, in this paper we consider analogues case of 

the SC motion chaotization [7-10] on the base of 
new form of perturbed dynamical equations (45). 
 

4.1.2 The chaotization analysis 
 
In considering case standard Melnikov function [25] 
(with multiplier ε) can be used for motion local 
chaotization detection: 

         0 0, ,l L L lM t f g f g L t l t t t dt




    (50) 

where    ,L t l t  are the dependences which 

correspond to the heteroclinic phase-orbits. 
These heteroclinic dependences for 

unperturbed  0   rigid body motion are the well-

known classical solutions in phase space of body 
angular moment’s components in the body 

coordinate frame  0 0 0; ;X Y ZG A p G B q G C r   , 

for example [6-10]: 
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where [b] stands for the integer part of b. 
From (30) auxiliary expressions follow: 
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With the help of (51)-(56) we rewrite 
expressions (46)-(49): 
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Take into account (57)-(60) and (50) the following 
harmonic Melnikov function can be obtained [25]: 
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This proves the fact of the multiple intersections 
of stable and unstable manifolds of saddle 
heteroclinic points and chaotic motion initiation. 

For illustration of chaotic aspects of the motion 
we also present the Poincaré sections. As we can 
see, the Poincaré sections (fig. 2-5) include chaotic 
layers near the separatrix regions. These chaotic 
layers prove the fact of the multiple separatrices 
splitting and chaotic motion initiation. It is needed 
to note that the Poincaré sections are plotted on the 

base of condition  mod 2 0t    in the phase 

space  , /l L G  (the coordinate axes values are 

dimensionless) by numerical calculations. 
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Figure 2 – Poincaré Section  

0 0 0 020, 13, 6, 1, 2, 0.0A B C G         

 
Figure 3 – Poincaré Section  

0 0 0 020, 13, 6, 1, 2, 0.002A B C G         

 
Figure 4 – Poincaré Section 

0 0 0 020, 13, 6, 1, 2, 0.003A B C G         

 
Figure 5 – Poincaré Section 

0 0 0 020, 13, 6, 1, 2, 0.014A B C G         

4.2 Chaotization of attitude motion of a 
dual-spin spacecraft at presence of small 
harmonic internal perturbations 
 
In this section we consider the attitude motion 
chaotization of one of the main types of SC-
satellites with passive gyroscopic stabilization of the 
spatial (angular) orientation. This is a dual-spin 
spacecraft (DSSC), also called as gyrostat-satellite 
(GS). Many authors investigated complicated 
regimes of the DSSC attitude motion [2-20] in 
different formulations. 

For example, papers [3-5] gave a description of 
motion of the dual-spin spacecraft at realization of a 
momentum transfer maneuver with rotor-body 
spinup. This maneuver is very important part of GS 
space mission. It can demonstrate motion evolutions 
with nontrivial change of attitude orientation and 
spacecraft longitudinal axis tumbling. These 
evolutions were explained with the help of direct 
analysis of motion equations, numerical experiments 
and on the base of probabilistic analysis of 
separatrices crossing [5]. 

In this paper we show possibility of the 
nontrivial motion modes realization as chaotic 
regimes initiation. 

 
4.2.1 Motion equations 
Let us examine the angular motion of the DSSC 
after realization of the spin-up maneuver [3, 4] in 
purposes to provide gyroscopic stabilization of the 
attitude DSSC position. The motion equations can 
be written as follows [19]: 

 

 

 

 

2

2

2

0,

0,

0,

,

Ap C B qr q

Bq A C pr p

C r B A pq

M

    

    

    

 









 (62) 

where  , ,
T

p q r  are components of the main 

(carrier) body angular velocity (which represented 
in projections onto axes of the Ox2y2z2 frame);  

 1C r      the longitudinal angular moment of 

the rotor along Oz1;    the rotor angular velocity 

relative to the carrier body;  2 2 2 2, ,diag A B CI  is 

the triaxial inertia tensors of the carrier body in the 

connected frame Ox2y2z2;  1 1 1 1, ,diag A A CI  is 

the inertia tensors of the dynamically symmetrical 
rotor in the connected frame Ox1y1z1; 1 2 ,A A A   

1 2 ,B A B   1 2C C C   are the main inertia 

moments of the coaxial bodies system in the frame 
Ox2y2z2 (including rotor); M   is the internal 
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torque of the coaxial bodies interaction; 
11 zC h    

the rotor relative angular moment in the carrier body 
frame Ox2y2z2. Assume that 2 2 2 1 1.A B C A C     

We also note, that axes  , ,i i ix y z , coincide with 

the principal axes of the coaxial bodies 1,2i  . 

 
Figure 6 – The DSSC coaxial bodies system and the 

coordinate frames 
 

The Serret-Andoyer variables can be expressed 
with the help of the coaxial system angular moment 
K (fig. 6): 
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2
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.
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y

z

K Ap G L l

K Bq G L l

K C r L

  

  

   

 (63) 

In the Serret-Andoyer variables the system 
Hamiltonian takes the form: 

 
 

 

0 1

2 2 2 2

0

1 2 1 2

22

1 2

1 1 2 3 3

;

sin cos

2

1
,
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L

C C

H H l L G I



  

 

 
    

  

  
  

  

 

 (64) 

where T – system kinetic energy;  – small non-
dimensional parameter; 1H  is the general form of 

the perturbed part of the Hamiltonian. 
As it follows from the Hamiltonian (64), 3,G I  

and 3  are constants in unperturbed case. Then 

corresponding dynamical system has one degree of 

freedom ,l L . In the case when the perturbed part 

of the Hamiltonian  1H  also depend only on l and 

L; then we obtain one-degree of freedom perturbed 
system: 
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 (65) 

where    
1 1

1 2 1 2A B A A
 

    ; ,L lg g  – are the 

general form of perturbations.  
Let us consider the system motion in the case 

when the carrier coaxial body with triaxial inertia 
tensor has non-nil longitudinal angular moment 
(angular velocity) along Oz2-direction, and the 
second coaxial dynamically symmetrical body has 
not longitudinal angular moment along Oz1-

direction  0  . For example, it was realized in 

the framework of Galileo space mission1 [26].  

Assume that small  1   harmonic internal 

torque between spinning and despinning sections 
takes place:  
 cosM t    (66) 

The torque (66) describes, for example, a 
disturbing signal of the control system of internal 

                                                 
1 Galileo was the fifth spacecraft to visit Jupiter, launched on 
October 19, 1989 [26]. This spacecraft was built as the coaxial 
DSSC with rotating and nonrotating sections. Scientific 
instruments were mounted on the big rotating section of the 
spacecraft (the DSSC carrier body), together with the main 
antenna, power supply, the propulsion module and most of 
Galileo's computers and control electronics. The nonrotating 
section included the camera system, the spectrometers and the 
photo-polarimeter radiometer. 
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spinup engine (the rotor angular velocity 
stabilization system) at presence of latency of 
angular velocity sensor.  

From the last equation (62) at presence of the 
small torque (66) the analytical solution follows 

  0 0  : 

 ( ) ( / )sint t     (67) 

After substitution of solution (67) into (64) we 
can write: 

2 2 2 2

1 2 1 2

2

2

1 2

sin cos

2

sin
1 1

sin ,
2

G L l l
H

A A A B

L t
t

C C




 


 
   

  

  
  

      
   

 

and with elimination of terms proportional to 2  we 

obtain the perturbed Hamiltonian form: 
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2 2 2 2

1 2 1 2

2
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


 

 
   

  

  

 (68) 

Then from (68) the separated shape of the 
Hamiltonian follows: 
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2 2 2 2 2

0
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,
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 
   

  

 

 (69) 

However, in order to use of the small 
dimensionless parameter we can proceed to the 
following expressions: 

 

0 1

2 2 2 2 2
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1 2 1 2 2

1 2
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,

sin cos 1
,

2 2
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H
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   

  

  

 (70) 

where ε is the small non-dimentional parameter. 
In this case we get the system (65) with the 

perturbations: 

   0; sinL lg t g t t      (71). 

 
4.2.2 Solutions for heteroclinic separatrix-orbits 
In order to apply the Melnikov method we need to 
have the heteroclinic exact explicit solutions. 
Solutions (51) are not suitable for considering case, 

because despite the Δ-vanishing (  0 0  ) coaxial 

bodies rotate relative to each other ( 0  ). So we 

still have the mechanical system of coaxial bodies 
with the internal degree of freedom, not the mono-
rigid-body. Therefore, the mono-rigid-body 
solutions (51) cannot be used, and we should apply 
coaxial-bodies-solutions (for example the 
solutions [19]).  

However, the problem of obtaining of the 
homo(hetero)clinic solutions is very challenging and 
exciting. In this work we consider an alternative (in 
contrast with [16, 19]) method of heteroclinic 
solutions obtaining – the method of direct 
substitutions [20]. 

So, let us briefly describe the methodology and 
obtain the heteroclinic solutions, which are 
appropriate for the considering case of the DSSC 
motion. 

Starting from the symmetry of the equations (62) 
and noting the similar symmetry of the hyperbolic 
functions and their derivatives, we can perform the 
following direct substitutions into (62): 

 

0

0

( ) , ( ) th ,
ch

( ) , 0,
ch

p
p t q t b t

t

r
r t

t






 
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 (72) 

and then after reducing we obtain the algebraic 
equations system for the unknown b and λ. After 
some transformations we obtain the expressions for 
“variables” b, λ as dependences on the “arbitrary” 
value 0p : 

 
 
 

  2 22 2 2 2
0 0

2 2

, .
C A A B A C A

b p p
C B B C B
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  
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

 (73) 

Knowing that the asymptotes of the hyperbolic 
polhodes (heteroclinic polhodes) passes through the 
intermediate axis of the angular moment’s ellipsoid 

(point  0 0, 0,
T

p r ) under condition 22TB K  [2], it 

is possible to finally write the heteroclinic solution's 
parameters: 
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


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
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






 (74) 

Then functions (72) with parameters (74) are the 
required heteroclinic solutions for the considering 
case. We need to note that form of these solutions is 
new regardless of its connection with previous 
results [16, 19].  
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4.2.3 The chaotization analysis  
In purposes to analyze the possibility of the attitude 
motion chaotization we can use classical Melnikov 
method [26]. The Melnikov function (with 
multiplier ε) in considered case for the perturbed 
system (65) with perturbations (71) has the form: 

        

      

0 0
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L l l L

L l

M t f g f g L t l t t t dt

f l t L t g t t dt
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





   

  





  (75) 

Taking into account (63) and (72) integral (75) is 
rewritten as: 
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We can analytically reduce integral J1 to the 
following expression 
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th sh
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With the help of integration “by parts” we 
obtain [27]: 

 
   
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cos sin
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Then the Melnikov function takes the final 
analytical harmonic form: 

  0 0 02
sech cos

2
M t bp AB t

 
  

 
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Also taking into account (74) it is possible to write 
the following Melnikov functions' expression 
containing the small disturbance amplitude (): 

 
  0 0

2 2

sech cos
2

AB
M t t

A C B C


 




 
  (79) 

Thus, the Melnikov function has infinite number 
of simple roots. This proves the fact of the multiple 
intersections of stable and unstable manifolds of 
saddle heteroclinic points. Therefore chaotic layer 
takes place near the separatrix region. The chaotic 

layer has been illustrated (fig. 7-10) with the help of 

Poincaré sections  mod 2 0t    in the phase 

space  , /l L G  (the coordinate axes values are 

dimensionless). 
It is needed to note, that the analytical form of 

the Melnikov function (79) and considered form of 
the heteroclinic solutions (72) (with parameters (74)
) are the main new results in comparison with 
previous works [19, 16, 11]. 

 
 

 
Figure 7 – Poincaré Section:  
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Figure 8 – Poincaré Section: 

2 2 2 1 115, 8, 6, 5, 4,

10, 0.1, 1
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G  
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Figure 9 – Poincaré Section: 
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Figure 10 – Poincaré Section 

2 2 2 1 115, 8, 6, 5, 4,

10, 0.8, 2
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5 Conclusion 
Attitude dynamics of the SC with variable structure 
was examined. Equations of the motion of the SC 
were obtained on the base of Hamiltonian formalism 
in the Serret-Andoyer variables. These equations 
can be used for analysis and synthesis of conditions 
of the SC attitude motion on active legs of orbital 
trajectories. 

Analytical and numerical modeling of the SC 
motion was realized. Existence of the SC chaotic 
modes of motion was demonstrated with the help of 
Melnikov method and Poincaré sections. 

Chaotic aspects of the DSSC's attitude dynamics 
were analytically studied at presence of small 
internal harmonic torque between coaxial bodies. 
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